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Abstract
Zero-Shot Relational Learning (ZSRL), strives to predict relations
that have not been observed during training, presenting a consid-
erable challenge in terms of model generalization. Existing ZSRL
methods usually utilize the prior knowledge of labels (e.g., text
description, ontological schema) to enable knowledge transfer by
learned features. Nonetheless, these methods remain limited to
calculating the surface features exhibited by relations, failing to
fully explore their underlying driving factors. This leads to insuffi-
cient discrimination between the shared and distinctive inherent
components among relations, which consequently impedes the
cognitive understanding required for advanced reasoning. In our
study, we aim to identify and utilize shared factors that widely
exist in the prior knowledge of classes to learn enhanced semantic
representations via shared factors composition, and develop our
Factor-based ZSRL framework (FZR) with Generative Adversarial
Networks (GANs) to bridge inequality between seen and unseen
classes. FZR is designed to restructure the semantic space in such
a way that it captures the essence of relation formation, thereby
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facilitating superior knowledge transfer in zero-shot scenarios. We
conduct extensive experiments and evaluate our model on real-
world datasets, and the results clearly demonstrate the effectiveness
of the proposed model in zero-shot relational learning tasks.
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• Information systems→ Data mining; • Computing method-
ologies→ Knowledge representation and reasoning; Seman-
tic networks.
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1 Introduction
Zero-Shot Learning (ZSL) represents a paradigm shift in machine
learning, enabling models to classify and predict instances that fall
outside their training scopes. Traditionally, ZSL has demonstrated
versatility across tasks [39], including image classification [40], re-
lation extraction [23], and node classification [37, 43]. However,
the core challenge of knowledge transfer from familiar to novel
classes remains. This issue is especially pronounced in the realm of
knowledge graphs, where complex relational networks require a
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Figure 1: The knowledge transfer process of Zero-Shot Rela-
tional Learning with inherent shared factors.

depth of understanding that transcends mere superficial features.
By representing semantic relationships between classes in a knowl-
edge graph, such as hierarchical structures, associative properties,
or other related information, this knowledge can be incorporated
into the model for reasoning on unseen classes. The knowledge
graph provides prior knowledge to the model, enabling better gen-
eralization in the inference process for new classes.

In the context of relational learning, ZSL offers a strategy to over-
come the limitation of missing training samples by leveraging prior
knowledge about relations. This technique relies on the exploitation
of prior knowledge, such as textual descriptions [30] of relations
or the ontological schemes [12] from Knowledge Graph (KG), to
infer unseen relations. The underlying premise of this approach
suggests that prior knowledge embodies the fundamental aspects
of relations, thus establishing a platform for subsequent learning.

However, current methods in Zero-Shot Relational Learning
(ZSRL) often focus on superficial aspects of relations and do not
thoroughly investigate the underlying factors that drive them. This
approach does not align with cognitive psychology’s processes for
recognizing new objects [34]. As a result, these methods do not
adequately differentiate between shared and unique components of
relations, hindering the cognitive understanding needed for more
advanced reasoning. Additionally, there is a lack of research on op-
timally configuring sampling and learning strategies at the sample
level within the ensemble framework [51]. As shown in Figure 1, It
is manifest that the shared factors play a pivotal role in represent-
ing the associations between relations such as ‘coach_won_trophy’
and ‘leagues_coaches’. These underlying elements are crucial for
capturing the essence of the relational linkage.

The exploration of shared factors in ZSRL tasks is constrained
by several limitations, preventing the establishment of well-defined
paradigms for their effective use in representation learning. Firstly,
there is a significant lack of methodological frameworks for system-
atically extracting and utilizing shared factors from relational text.
Secondly, integrating these shared factors into the ZSRL framework
poses a considerable challenge. Additionally, the presence of ho-
mogeneous relations within knowledge graphs (KGs) often results
in highly similar shared factor representations, which diminishes
the model’s capacity for generalization. Therefore, improving the
model’s ability to distinguish between such homogeneous relations
is a critical concern that requires attention.

To address these limitations, in this paper, we propose the Factor-
based Zero-shot Relational Learning model (FZR), a novel frame-
work designed to identify and utilize shared factors that widely
exist in the prior knowledge of relations through factor extraction

and shared factors composition. Then we employ a Generative Ad-
versarial Network (GAN) to learn to embody these factors, enabling
knowledge transfer between seen and unseen relations. In a man-
ner similar to the situation encountered in [48, 49], although the
approach differs, we introduce an expert-guided mechanism for
reconstructing semantic representations of relations, where experts
score the degree of relevance between relation pairs. This recon-
struction is sensitive to the nuances among homogeneous relations
and, when combined with the latent shared factors, results in an
enhanced relation representation. Finally, to empirically validate
the efficacy of our proposed model, we conduct extensive exper-
iments on large-scale real-world datasets. Our experiments not
only demonstrate the model’s superior performance in predicting
unseen relations but also highlight its ability to generalize from
limited information, thereby setting a new precedent for future ZSL
applications within knowledge graphs and beyond. In summary,
the main contributions could be summarized as follows:
• We present the factor-based zero-shot relational learning frame-
work (FZR) to learn enhanced semantic representations via shared
factors composition.

• By integrating expert scores that assess the degree of relevance
between homogeneous relations, we have reconstructed the se-
mantic representation space. This ensures the model’s sensitivity
to subtle distinctions.

• We benchmark our model against state-of-the-art baselines on
NELL-ZS and Wiki-ZS datasets. The comparative experiments
clearly demonstrate the superiority of our model in zero-shot
learning scenarios.

2 Related work
2.1 Zero-Shot Learning
The core of Zero-shot Learning (ZSL) is enabling knowledge shar-
ing and inductive transfer between the seen and unseen classes.
Traditional zero-shot learning paradigms predominantly leverage
an attribute [22, 44, 45] or semantic space [9, 53] to establish inter-
class correlations. Within the attribute-based representation, some
works endeavor to construct a correlation matrix between classes
and attributes [1], while others utilize class attribute descriptions
as a prior knowledge [8, 22, 24, 25], employing attributes to charac-
terize class features. Such approaches learn semantic connections
between classes through shared attributes, although they are no-
tably sensitive to the quality of attributes and encounter domain
shift challenges while attributes are tailored to describe localized
class features. In the context of text-based semantic representa-
tion, some studies harness textual descriptions of classes [9, 17]
or graph-like structures of classes [47] or pre-trained distributed
word embeddings for modeling class semantic [27, 30, 50], deriv-
ing class semantic representations directly from widely available
unstructured class text information [29]. To mitigate the perva-
sive noise in raw text, some employ TF-IDF features to diminish
the influence of irrelevant words [41]. Furthermore, knowledge
graph embedding-based methods [13, 31, 42] have been explored
to learn semantic vectors within well-constructed KGs. However,
the content of many large-scale public knowledge graphs, such
as ConceptNet and WordNet, is not exhaustive, offering limited
coverage of domain-specific knowledge. Besides, with the help of
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ontology-bsed knowledge representation and semantic informa-
tion [12, 14], recent works explore richer and more competitive
structured prior knowledge to model the inter-class relation for
knowledge transfer in ZSL.

To achieve knowledge transfer from seen to unseen classes, a typ-
ical strategy is to learn a mapping function. Some works train class
mapping based on instances of seen classes [6, 9, 22], and during
testing, the input class vectors are projected into the correspond-
ing vector space to identify the nearest neighbors as prediction
labels [20]. Others learn an inverse mapping, projecting labels into
the input instance space [5, 18, 42, 50], or propose aligning feature
vectors and class instances within a unified space [10]. Nonetheless,
trained on samples of seen classes, mapping-based approaches are
more sensitive to seen classes and show weaker predictive per-
formance for unseen classes. In recent years, generative models
like GANs [15] have been proposed to generate samples for un-
seen classes based on class prior knowledge [24, 30, 44, 53, 54],
transforming the ZSL task into a conventional supervised learning
task and alleviating the issue of sparse samples for unseen classes.
Although generative methods are also trained on samples of seen
classes, the generator can enhance generalization performance for
unseen classes based on semantic interlinkage between classes. In
this paper, we also employ a GAN to construct our ZSL framework
for inter-class knowledge transfer learning.

2.2 Zero-Shot Relational Learning
The majority of research works in Zero-Shot Learning (ZSL) have
predominantly concentrated on various challenges within the realm
of computer vision [11, 18, 42]. A subset of this research has ex-
panded the application of ZSL to the task of knowledge graph
completion, predicting the existence of hitherto unobserved enti-
ties by leveraging auxiliary linkages with previously recognized
entities [16, 33, 38, 52], incorporating textual descriptions of enti-
ties [32] or learning entity-independent graph representations to
naturally generalizing to unseen entities [7, 35]. Recently, the task
of Zero-shot relational learning has attracted some attention, which
involves introducing textual descriptions of relations [30] or onto-
logical scheme [12, 14] to implement knowledge transfer between
seen and unseen relations for predicting new-added facts. However,
these methods remain limited to calculating the surface features
of relations, failing to fully explore the underlying driving factors,
creating a bottleneck in classification performance. In this paper,
we propose a novel perspective to exploit the prior knowledge to
obtain enhanced relation semantics.

3 Methodology
In this section, we first illustrate our research problem formally and
present task-related notations. Afterwards we will introduce our
proposed general ZSL framework FZR, which includes enhanced
relation representation with shared factors composition, expert-
guided semantic reconstruction and a generative adversarial net-
work (GAN) to generate semantic embeddings for knowledge trans-
fer learning. Figure 2 presents the overall framework of FZR.

3.1 Task Formulation
We focus on the specific zero-shot relational learning problem in
KG link prediction task. The object of learning and fitting for the
model is the embeddings of relation within the KG. We endeavor
to construct enhanced relation representations, employing gener-
ative models to synthesize samples for unseen relations, thereby
facilitating link prediction performance of these relations within
general zero-shot relational learning setting.

In this task, a KG G is composed of a set of entities E , a set
of relations R and a set of triple facts T = {(ℎ, 𝑟, 𝑡) |ℎ, 𝑡 ∈ E; 𝑟 ∈
R}. We use 𝑅𝑠 , 𝑅𝑢 to denote the set of seen relations and unseen
relations, respectively. Note that, here 𝑅𝑠 ∩ 𝑅𝑢 = ∅. Since our
target can be formulated as predicting the tail entity 𝑒2 given the
head entity 𝑒1 and the query relation 𝑟 , for each query tuple (𝑒1, 𝑟 ),
there are a ground-truth tail entity 𝑒2 and a candidate set 𝐶 (𝑒1, 𝑟 ).
Then we define 𝐷𝑡𝑟 = {(𝑒1, 𝑟𝑠 , 𝑒2,𝐶 (𝑒1, 𝑟𝑠 )) |𝑒1, 𝑒2 ∈ E; 𝑟𝑠 ∈ 𝑅𝑠 }
as the training dataset. During testing, the proposed model is to
predict the relational facts of unseen relations 𝑟𝑢 ∈ 𝑅𝑢 . It is noted
that we consider a closed set of entities. Specifically, each entity
that appears in the testing triples is still in the entity set E. Thus,
we define 𝐷𝑡𝑒 = {(𝑒1, 𝑟𝑢 , 𝑒2,𝐶 (𝑒1, 𝑟𝑢 )) |𝑒1, 𝑒2 ∈ E; 𝑟𝑢 ∈ 𝑅𝑢 } as the
testing dataset. In this setting, zero-shot link prediction aims to
assign the highest ranking score to 𝑒2 against the rest of all the
candidate entities in 𝐶 (𝑒1, 𝑟𝑢 ). Therefore, during testing, we will
predict the triple facts of 𝑟𝑢 by ranking 𝑒2 with the candidate tail
entities 𝑒

′
2 ∈ 𝐶 (𝑒1, 𝑟𝑢 ).

3.2 Enhanced Relation Representation with
Shared Factors Composition

In cognitive psychology [34], it has been observed that multiple
small units collaboratively engage in a series of cognitive activities.
When humans encounter new procedural knowledge, they update
their cognitive activities by updating related components across
these units [21]. In our study, we propose that shared factors serve
as crucial units in facilitating new relation learning, and introduce a
novel methodology termed Shared Factors Composition (SFC). The
SFC is designed to construct enhanced semantic representations of
shared factors from the textual descriptions of relations, thereby
amplifying the effectiveness of knowledge transfer within zero-shot
relational learning settings. Considering this, our SFC approach
innovatively combines keyphrase extraction, clustering algorithms,
and the composition of factors representations, which provides
a comprehensive framework for representing relations in zero-
shot relational learning, augmenting the model’s comprehension
of unseen relations, and offering an effective avenue for exploring
the latent interconnections among relations.

With the text descriptions as prior knowledge, the initial seman-
tic representations of relations can be obtained by the pre-trained
word embedding model, Glove [28]. For a given text description,
composed of words {𝑤1,𝑤2, . . . ,𝑤𝑛}, the initial semantic represen-
tation r𝑜 of relation 𝑟 is the aggregate of its word vectors:

r𝑜 =
1
𝑛

𝑛∑︁
𝑖=1

w𝑖 (1)

To lay the groundwork for SFC, we initiate the process with the
extraction of key factors from text descriptions, which serve as the



CIKM ’24, October 21–25, 2024, Boise, ID, USA Zhijun Dong et al.

coach_won_trophy:
Specifies that a particular 
coach coaches a team that 
won a particular award or 
trophy

Word
Embedding

coach

teamtrophy

… … Clustering

Shared Factors

SFC
Representation

Relevance
Filtering

coach_won_trophy
1. league_coaches
2. team_coach
3. team_won_trophy
4. team_in_game
5. teammate

Relevance scores
MSE Loss

Expert-Guided
Representation

GAN
Generator

noise
GAN

Discriminator

Feature
Extractor

Fact triples of
training relation

Fa
ke

Real

True/False?

Unseen Relation
Embedding

Classification Loss

Zero-shot
Classifier

New Relation
Facts

Generative Knowledge Transfer Learning

Factor
Extraction

Expert
Scoring

…

Relation Pair

Enhanced Semantic Representation Construction

Textual Embeddings

Mapping
Network

Figure 2: Overview of the proposed ZSL framework FZR. In detail, the two panels indicate the enhanced semantic representation
construction process and generative knowledge transfer learning with GAN, respectively.

foundational elements of our factor library. For this pivotal part, we
leverage the unsupervised keyword extraction algorithm provided
by Python Keyphrase Extraction toolkit [3] to efficiently identify
the most salient phrases and terms that capture the essence of the
textual content, which are then aggregated to form a shared factor
library. It is imperative to note that, the extracted factors are not
subjected to deduplication, thereby preserving the integrity of their
individual contributions to the overall semantic structure.

Within the context of prior knowledge, the semantic intercon-
nectivity inherent in relations is discernible. Even though the de-
ployment of these relations within disparate domains, the semantic
interlinkage is capable of being apprehended and integrated bymod-
els to bolster inferential reasoning. Hence, the method we introduce
is dedicated to uncovering such shared semantic factors among re-
lations, and to the reconstruction of the relations’ initial semantic
representations r𝑜 through shared factors composition. Specifically,
SFC is accomplished by clustering within the representation of
factor library, thereby ensuring that the emergent cluster represen-
tations encapsulate the semantic properties of the shared factors
that widely exist in KG relations. In this endeavor, we also proposed
to employ unsupervised clustering algorithms(e.g.,K-means [26]) to
affirm the robustness of our method. By calculating the similarity
between each initial semantic representation of relation and the
representations of cluster centroids {c1, c2, . . . , c𝑘 }, we can assign
a set of weights to each relation, indicating the importance of each
shared factor in the new semantic representation:

𝛼𝑖 =
exp(cos(r𝑜 , c𝑖 ))∑𝑘
𝑖=1 exp(cos(r𝑜 , c𝑖 ))

(2)

where 𝑐𝑜𝑠 denotes the cosine similarity. And then we get the recon-
structed representation r𝑐 as the SFC representation:

r𝑐 =

𝑘∑︁
𝑖=1

𝛼𝑖c𝑖 (3)

3.3 Expert-Guided Semantic Reconstruction
Our innovation recognizes that domain-specific knowledge graphs
(KGs) often contain many homogeneous relations, which, while
similar in factor representations, require careful differentiation. For
example, the relations purchase’ and invest’ both involve the con-
cept of ’buying something,’ but they apply to different domains
and involve different types of entities. To address this, we intro-
duce an expert-guided semantic reconstruction mechanism that
redefines the relational semantic space with precision. By incor-
porating expert knowledge through manually assigned relevance
scores between similar relations, we enhance the model’s ability to
distinguish between them during reasoning.

3.3.1 Preliminary Filtering Mechanism. It is essential to recognize
the profusion of relations that populate real-world knowledge
graphs, a factor that renders the exhaustive manual scoring of
each relation pair an unfeasible task. To address this challenge, a
more pragmatic approach is suggested. Domain experts are invited
to direct their evaluative expertise selectively towards those rela-
tion pairs that have been pre-identified as relevant through the
computational determination of similarity in relation embeddings.
This preliminary filtering mechanism is designed to enhance the
efficiency of the expert scoring process, allowing for a concen-
trated focus on relation pairs that are deemed significant based on
their computed semantic proximity. This targeted approach not
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only streamlines the evaluation process but also ensures that the
semantic reconstruction is grounded in the most pertinent and se-
mantically rich relational data, as determined by expert judgment.

Let R be the set of all relation pairs in the knowledge graph, and
let r𝑖 and r𝑗 be the embeddings of two relations 𝑖 and 𝑗 respectively.
We define the similarity function 𝑆 : R × R → R, which computes
the similarity between any two relation embeddings. The function
can be, for instance, the cosine similarity:

𝑆 (r𝑖 , r𝑗 ) =
r𝑖 · r𝑗

∥r𝑖 ∥∥r𝑗 ∥
(4)

Given a threshold 𝜃 , the preliminary filtering mechanism F
selects a subset of relation pairs R′ ⊆ R deemed relevant:

R′ = F (R, 𝜃 ) = {(r𝑖 , r𝑗 ) ∈ R | 𝑆 (r𝑖 , r𝑗 ) ≥ 𝜃 } (5)

For a given relation r𝑖 , we define the recall function C : R → 2R ,
which maps r𝑖 to its recall list of relations from R′. For convenience,
we set 𝑛 to restrict the number of recalled relations.

C(r𝑖 ) = {r𝑗 | (r𝑖 , r𝑗 ) ∈ R′ ∧ |C(r𝑖 ) | ≤ 𝑛} (6)

3.3.2 Semantic Space Reconstruction. In this system, domain ex-
perts provide scores for the relatedness between pairs of relation-
ships, which are then incorporated into the reconstruction process
as a key reference for reconstructing the semantic space of relations.

Let 𝐸 (r𝑖 , r𝑗 ) be the expert score for the relevance between the
representation r𝑖 and another representation r𝑗 in recall list C(r𝑖 ).
We aim to learn a mapping function 𝑓 such that the transformed
representations reflect the expert-level semantic comprehension:

𝑓 (r𝑖 ) = argmin
𝑓

∑︁
r𝑗 ∈C(r𝑖 )

∥ 𝑓 (r𝑖 ) − 𝑓 (r𝑗 )∥22 · 𝐸 (r𝑖 , r𝑗 ) (7)

Consequently, for each relation 𝑟 , we are capable of learning two
distinct types of representations, i.e., the shared factors composition
representation as mentioned in 3.2 and the expert-guided semantic
representation as mentioned in 3.3. To fuse the semantic features
from these two representations, we concatenate them to form the
final representation of the relation:

r∗ = [r𝑐 ; 𝑓 (r𝑜 )] (8)

3.4 Generative Knowledge Transfer Learning
With the enhanced semantic representations, we next show how to
utilize them for generative knowledge transfer learning. Specifically,
we will introduce how we obtain the real embedding of relations
by feature extractor and the framework of our generative method.
Given the demonstrated effectiveness of Generative Adversarial
Networks (GANs) in learning the congruence between class vectors
and their corresponding instances, we employ GANs to facilitate
the transfer of knowledge from seen to unseen relations. Our GAN
architecture comprises three integral components: a generator𝐺 , a
feature extractor 𝐸, and a discriminator 𝐷 .

3.4.1 Feature Extractor. In contrast to traditional knowledge graph
embedding methods, which learn entity and relation embeddings
based on certain assumptions or constraints, our approach aims
to learn the cluster-structured feature distribution of both seen
and unseen relational facts, thereby preserving high intra-class
similarity and relatively low inter-class similarity, in line with the

majority of ZSL works. Building upon previous works [12, 30] for
learning and training authentic relation embeddings, we posit the
existence of an entity pair set 𝑇𝑟 = {(𝑒1, 𝑒2) | (𝑒1, 𝑟 , 𝑒2) ∈ T } where
𝑟 ∈ 𝑅𝑠 . An entity pair set 𝑇𝑟 is denoted by the seen relation 𝑟 and
contains all triples involving the relation 𝑟 . Consequently, the true
embedding 𝑥𝑟 of relation 𝑟 is represented by the embedding of
entity pairs within set 𝑇𝑟 , thus allowing for supervised training via
a selection of reference triples from this set.

Specifically, for the entity pair (𝑒1, 𝑒2) in the set𝑇𝑟 , we first embed
each entity using a simple Fully Connected (FC) layer, generating
the embedding 𝑢𝑒𝑝 for the entity pair:

𝑢𝑒𝑝 = 𝜎 ( [𝑓1 (𝑣𝑒1 ); 𝑓1 (𝑣𝑒2 )])
𝑓1 (𝑣𝑒 ) =𝑊1 (𝑣𝑒 ) + 𝑏1

(9)

where [.; .] denotes the concatenation operation, 𝜎 is 𝑡𝑎𝑛ℎ activa-
tion function. We further consider the one-hop structure of each
entity, embedding the one-hop neighbors through an FC layer as
well. For the head entity 𝑒1, its structural embedding 𝑢𝑒1 is repre-
sented by the aggregation of embeddings from its neighbor nodes.
The structural embedding 𝑢𝑒2 for the tail entity 𝑒2 is computed in
the same way.

𝑢𝑒 = 𝜎 ( 1
∥N𝑒 ∥

∑︁
(𝑟𝑛,𝑒𝑛 ) ∈N𝑒

𝑓2 (𝑣𝑟𝑛 , 𝑣𝑒𝑛 ))

𝑓2 (𝑣𝑟𝑛 , 𝑣𝑒𝑛 ) =𝑊2 (𝑣𝑟𝑛 ; 𝑣𝑒𝑛 ) + 𝑏2
(10)

whereN𝑒 = (𝑟𝑛, 𝑒𝑛) | (𝑒, 𝑟𝑛, 𝑒𝑛) ∈ T denotes the one-hop neighbors
of entity e, 𝑓2 is also a FC layer to encode the corresponding neigh-
bor entity. The final embedding for the entity pair (i.e., the true
embedding 𝑥𝑟 of relation 𝑟 ) is represented by the concatenation of
𝑢𝑒𝑝 , 𝑢𝑒1 and 𝑢𝑒2 .

𝑥𝑟 = 𝑥 (𝑒1,𝑒2 ) = [𝑢𝑒1 ;𝑢𝑒𝑝 ;𝑢𝑒2 ] (11)

We employ some reference triples to train the true relation em-
beddings. With each relation 𝑟 , the entity pairs in set 𝑇𝑟 are ran-
domly divided into two parts: a reference set (𝑒∗1, 𝑟 , 𝑒

∗
2) and a positive

set (𝑒+1 , 𝑟 , 𝑒
+
2 ). We also generate a set of negative triples (𝑒+1 , 𝑟 , 𝑒

−
2 )

by replacing the tail entity of each triple in the positive set with
other entities. For𝑚 reference triples, we take the mean of the refer-
ence relation embeddings 𝑥 (𝑒∗1 ,𝑒∗2 ) and calculate the cosine similarity
with each positive triple’s relation embedding and each negative
triple’s relation embedding as 𝑠𝑐𝑜𝑟𝑒+𝜔 and 𝑠𝑐𝑜𝑟𝑒−𝜔 . A margin ranking
loss is then employed to optimize the training:

𝐿𝜔 =𝑚𝑎𝑥 (0, 𝛾 + 𝑠𝑐𝑜𝑟𝑒+𝜔 − 𝑠𝑐𝑜𝑟𝑒−𝜔 ) (12)

where 𝜔 = 𝑊1,𝑊2, 𝑏1, 𝑏2 is the parameter set and 𝛾 denotes the
margin parameter.

3.4.2 Adversarial Training. During adversarial training, the en-
hanced relation embeddings serve as inputs to the generator 𝐺 ,
concatenated with random noises. Real embeddings of relations
can be provided by feature extractor 𝐸, and the discriminator D
will distinguish the generated embeddings from the real ones. We
generate sample embeddings instead of raw samples to ensure both
accuracy and efficiency as in many works [12, 30, 44].

Formally, for a relation 𝑟𝑖 , the generator 𝐺 take as input its
enhanced representation 𝑟∗

𝑖
and a random noise 𝑧 sampled from
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Table 1: Statistics of the ZSRL datasets. # Ent. and #
Triples denote the number of entities and triples in KGs.
# Train/Dev/Test denotes the number of relations in train-
ing/validation/testing sets.

Dataset # Ent. # Triples # Train/Dev/Test

NELL-ZS 65,567 188,392 141/10/30
Wiki-ZS 605,812 724,967 469/20/48

a normal distribution, then generate its embeddings: 𝑥 = 𝐺 (𝑧, 𝑟∗
𝑖
).

Following the settings in [30], the loss of G is defined as:

𝐿𝐺 = −E[𝐷 (𝑥)] + 𝜆1𝐿𝑐𝑙𝑠 (𝑥) + 𝜆2𝐿𝑃 (13)

where the first term is Wasserstein loss to ensure the generated
embeddings distribution closely aligns with the real embeddings
distribution, the second term is a supervised classification loss for
classifying the synthesized embeddings, and the third is for reg-
ularizing the mean of generated embeddings of each class to be
the mean of its real embeddings. Both of the latter two loss terms
encourage the generated embeddings to have more inter-class dis-
criminability. 𝜆1 and 𝜆2 are the corresponding weight coefficients.

The discriminator 𝐷 is tasked with distinguishing between syn-
thetic embeddings 𝑥 from 𝐺 and real features 𝑥 provided by the
𝐸. The loss function for the discriminator 𝐷 consists of five com-
ponents: the first two approximate the Wasserstein distance be-
tween the distributions of synthetic and real embeddings, the third
and fourth are supervised classification loss, the fifth is a gradient
penalty that ensures the gradients of𝐷 are of unit norm, which aids
in stabilizing the training process and preventing mode collapse:

𝐿𝐷 = E[𝐷 (𝑥, 𝑟∗𝑖 )] − E[𝐷 (𝑥)] + 𝜆3𝐿𝑐𝑙𝑠 (𝑥) + 𝜆4𝐿𝑐𝑙𝑠 (𝑥) + 𝐿𝐺𝑃 (14)

where 𝜆3 and 𝜆4 are the weight coefficients of the two supervised
classification loss.

3.5 Implement Prediction for Unseen Relations
Leveraging the capabilities of a well-trained GAN, we utilize the
generator𝐺 to synthesize features and implement task-specific pre-
diction for classes that have not been encountered during training.
The evaluation of triples is conducted by measuring the similar-
ity between the generated embedding of relation 𝑟 and the joint
embedding of the entity pair (𝑒1, 𝑒2).

Specifically, given a unseen relation 𝑟𝑢 and its enhanced semantic
representation 𝑟∗𝑢 , the generator can synthesis plausible embedding
𝑥𝑟𝑢 = 𝐺 (𝑧, 𝑟∗𝑢 ). For a query tuple (𝑒1, 𝑟𝑢 ), the similarity ranking
score can be calculated by the cosine similarity between 𝑥𝑟𝑢 and
𝑥 (𝑒1,𝑒2 ) while 𝑒2 ∈ 𝐶 (𝑒1, 𝑟𝑢 ) :

𝑠𝑐𝑜𝑟𝑒 (𝑒1,𝑟𝑢 ,𝑒2 ) =
1

𝑁𝑡𝑒𝑠𝑡

𝑁𝑡𝑒𝑠𝑡∑︁
𝑖=1

𝑠𝑐𝑜𝑟𝑒𝑖(𝑒1,𝑟𝑢 ,𝑒2 ) (15)

where 𝑁𝑡𝑒𝑠𝑡 denotes the number of generated embeddings of spe-
cific relation since we could set an arbitary number to satisfy de-
mands of different tasks.

4 Experiments
4.1 Experimental Setup
4.1.1 Datasets. We conduct the experiments of ourmodel and base-
lines on two public benchmarks proposed by [30], i.e., NELL-ZS
and Wiki-ZS formulated from NELL [4] and Wikidata, respectively.
Each relation in these datasets is accompanied by a textual de-
scription and the types of its corresponding entities. Within each
knowledge graph, seen relations are included in the training set
and validation set, while unseen relations are confined to the test
set, with corresponding triples distributed accordingly.

Given to the lack of a detailed explanation for the dataset splits by
the previous work [12, 30], and in the interest of adhering to a more
general Zero-Shot Relational Learning setting as well as facilitating
a fairer comparison, we implement a three-fold random partitioning
of the Train/Dev/Test splits. Subsequently, we conduct three-fold
cross-validation over these partitions. It is imperative to underscore
that unlike the conservative approach of [12], which fixed the test
relations and merely reallocated the training and validation sets,
we posit that the model performance on the re-partitioned datasets
more vividly reflects their adaptability to zero-shot scenarios and
offers a more robust validation of their generalization capabilities.
Therefore, we re-conducted the experiments for all baseline models
on the re-partitioned datasets. More statistics about these datasets
are presented in Table 1.

4.1.2 Evaluation Metrics. During testing, the models are employed
to rank all tail entities from a candidate list given a head entity
and a relation in a test triple. Consequently, following the setting
in [30], we adopt commonly used metrics in KGC tasks: mean
reciprocal ranking (MRR) and hits at ranks 10 (H@10), 5 (H@5),
and 1 (H@1) for evaluation purposes. MRR represents the average
of the reciprocal ranks of all correct entities, and H@k denotes the
percentage of testing samples where the correct entity is ranked
within the top k positions among all candidates.

4.1.3 Baselines. We compare our ZSL method with the state-of-
the-art baselines, including three traditional Knowledge Graph
Embedding (KGE) methods: TransE [2], DistMult [46], and Com-
plEx [36], along with three generative approaches for Zero-Shot
Learning: ZSGAN [30], OntoZSL [12], and DOZSL [14].

Although traditional KGE methods are not specifically designed
for zero-shot learning tasks, including them in comparative ex-
periments is essential for establishing a baseline performance for
comparison and analysis. Inspired by ZSGAN [30], we propose
zero-shot variants of three KGE methods: ZS-TransE, ZS-DistMult,
and ZS-ComplEx. Instead of using randomly initialized vectors to
represent relations in triples, we employ a feed-forward network
similar to our generator’s architecture to obtain relation represen-
tations. The input to this network is the textual embedding of the
relation, which is fine-tuned along with the entity embeddings
during training. During testing, the textual embeddings of unseen
relations are processed through this network to generate relation
representations, and predictions for factual triples are made using
the original methods’ scoring functions.

Among the generative ZSL baselines, ZSGAN [30] acquires re-
lation embedding through the textual description of relation, On-
toZSL [12] obtains relation embedding by jointly encoding the
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Table 2: Results(%) of zero-shot link prediction with unseen relations. The Bold results are the best performance.

Method type Model NELL-ZS Wiki-ZS
MRR Hit@1 Hit@5 Hit@10 MRR Hit@1 Hit@5 Hit@10

Traditional KGE-
based method

ZS-TransE 20.3 13.4 27.1 32.0 15.1 8.7 20.8 27.5
ZS-DistMult 21.9 17.7 25.9 29.0 16.4 13.4 19.2 21.4
ZS-ComplEx 21.6 17.1 26.0 29.4 11.4 7.5 15.1 18.2

Generative-based method
with pre-trained TransE

ZSGAN 38.0 29.2 47.3 53.6 40.8 35.3 46.7 50.9
OntoZSL 38.9 29.5 49.0 56.6 41.3 35.6 46.6 52.0
DOZSL 39.7 30.0 50.4 57.7 41.6 35.6 47.3 52.4

FZR(ours) 41.9 32.6 52.1 59.1 42.7 36.7 48.3 53.5

Generative-based method
with pre-trained DistMult

ZSGAN 40.0 31.9 48.5 55.5 43.6 38.6 49.1 52.4
OntoZSL 40.2 31.2 50.0 57.6 44.7 38.8 49.2 53.7
DOZSL 41.1 32.3 51.2 58.3 44.6 39.7 48.9 53.3

FZR(ours) 43.3 34.9 51.9 59.5 45.1 39.2 50.0 54.6

textual description and the ontological structural knowledge. Both
of them subsequently employ a GAN to generate the corresponding
relation representation. DOZSL [14], built upon OntoZSL, encodes
the disentangled ontological structure of relation to obtain relation
representation and introduces a propagation-based ZSL learner.
In all generative ZSL approaches, a feature extractor is used in
conjunction with pre-trained KG embeddings. For the sake of gen-
eralizability, we adopt two representative KGE models, TransE [2]
and DistMult [46] within the feature extractor in our experiments.

4.1.4 Implementation Details. For the NELL-ZS dataset, we em-
ploy a feature extractor pre-trained with 100-dimensional KGE
embeddings to obtain 200-dimensional relation embeddings. For
the Wiki-ZS dataset, in accordance with the settings of [30], we
utilize a feature extractor pre-trained with 50-dimensional KGE
embeddings to acquire 100-dimensional relation embeddings.

The training of the feature encoder and generative model is
conducted using the Adam optimizer [19] for parameter updates,
with the margin parameter 𝛾 set to 10. For the feature encoder, the
upper limit of neighbor count is set at 50, with a number of triples
k considered for a training step fixed at 30, and the learning rate
established at 5e−4. For the generative model, the learning rate is set
to 1e−3, with 𝛽1 and 𝛽2 parameters set to 0.5 and 0.9, respectively.
The discriminator is updated five times for every update of the
generator. The dimension of the random vector z is 15, with the
number of relation embeddings generated per batch set at 20. The
weight for the classification loss 𝜆1, 𝜆3, 𝜆4 are set at 1, 0.5, 0.5. The
pivot regularization 𝜆2 is set at 3.

For NELL-ZS, the generator’s hidden units is set to 250, out-
putting 200-dimensional relation embeddings, while the discrimina-
tor’s hidden units is set at 200, outputting a 2-dimensional vector to
determine whether the input is real data.While forWiki-ZS, the hid-
den units of the generator is set to 250 and that of the discriminator
is 100. For relation text word embeddings, we utilize the published
300-dimensional word embeddings from glove.6B.300d.txt and em-
ploy TF-IDF to obtain denoised text embeddings. For each relation
text description, we extract three key words as factors. For the
corpus composed of all shared factors, we set the number of factor

clusters to 10. For each relation, we recall five relations from all
relations for relevance scoring.

4.2 Main Results
We report the results of ZSL testing on NELL-ZS and Wiki-ZS
datasets in Table 2. From the results, we find that our FZR method
(with TransE and DistMult) achieves a obvious lead compared with
either traditional KGE-based methods or generative-based methods.
This demonstrates the effectiveness of our factor-based zero-shot re-
lation learning designs. Moreover, we can observe more interesting
findings from this table:

First, there is a significant performance improvement for all
generative-based methods over traditional KGE-based methods.
To mitigate the performance fluctuations caused by different pre-
trained KGE embeddings, we test each generative-based method
with pre-trained TransE and DistMult embeddings, and observe
significant performance improvements, underscoring the knowl-
edge transfer capabilities of generative models. Second, among
four generative-based methods, our FZR model significantly out-
performs other methods with either pretrained TransE or DistMult.
This proves that shared factors provide a more extensive linkage
between seen and unseen relations, thus enabling more effective
predictions for unseen relations. In more detail, compared to DOZSL
on the NELL-ZS dataset using the same TransE pre-trained embed-
dings, FZR exhibited an increase of 2.6% in Hit@1 and 2.3% in
Hit@5. Similarly, with DistMult pre-trained embeddings, our FZR
model showed improvements of 2.6% in Hit@1 and 0.7% in Hit@5.
Third, the performance improvements of our model on the Wiki-ZS
dataset are less significant than NELL-ZS. This is likely due to the
dataset’s short relation descriptions, which provide limited prior
knowledge, making the extracted factors less effective at explain-
ing the relations. Consequently, the performance gap between our
method and those that directly leverage the prior knowledge of
relations, like ZSGAN, is not as pronounced.

From the perspective of performance improvement through
model optimization, the method we used is very simple and ef-
ficient. As shown in Table 2, our method achieves significant im-
provements in model performance. For example, on the NELL-ZS
dataset, FZR outperforms DOZSL by a larger margin (5.4%) in terms
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Table 3: Results(%) of FZR on NELL-ZS when embeddings of
shared factors composition("-sfc") and embeddings of expert-
guided semantic("-exp") are removed from the enhanced rep-
resentations of relations.

Test set Model MRR Hit@1 Hit@5 Hit@10

NELL-ZS

FZR 41.9 32.6 52.1 59.1
FZR(-sfc) 41.2 32.3 51.0 57.4
FZR(-exp) 41.6 32.4 51.8 58.1

FZR(-sfc&exp) 38.0 29.2 47.3 53.6

of MRR compared to the performance improvement of DOZSL
over ZSGAN (2.8%). Additionally, the performance improvement of
FZR over DOZSL in terms of Hit@1 (8.0%) is also higher than the
performance improvement of DOZSL over OntoZSL (3.5%).

4.3 Ablation Studies
To further verify the effectiveness of the individual components
constituting our enhanced relation representation, we seriously de-
sign ablation experiments. Specifically, the experiments encompass
FZR (our full proposed model), FZR-sfc (FZR without shared factors
composition representation), FZR-exp (FZR without the expert-
guided semantic representation), and FZR-sfc&exp (FZR lacking
both shared factors composition representation and expert-guided
semantic representation, effectively equivalent to ZSGAN).

We train these models on the NELL-ZS dataset, using TransE as
the pre-trained KG Embedding for training the feature extractor.
The test results for each ablated variant are reported in Table 3.
The results affirm the significance of both the expert-guided seman-
tic representation and the shared factor composition in our FZR
model. The complete FZR model, which incorporates these two
components, consistently outperformed its ablated variants. The
FZR(-exp) variant showed a slight decrease in performance, suggest-
ing that while this component enhances the model’s capabilities
of generalization, it is not the sole contributor of FZR. Meanwhile,
the FZR(-sfc) model, without the shared factor composition, faced a
more substantial reduction in performance, highlighting its impor-
tance in the model’s architecture. The combined absence of both
components in the FZR(-sfc&exp) variant led to the most significant
performance drop, confirming that the synergy between the expert-
guided semantic representation and the shared factor composition
is crucial for the model’s ability to effectively perform zero-shot
learning.

4.4 Hyperparameter Tune-up
In our model, two principal hyperparameters are of paramount im-
portance: the number of clusters 𝑘 for shared factors as mentioned
in subsection 3.2 and the number of recall relations 𝑛 employed for
expert scoring as mentioned in subsection 3.3. These hyperparame-
ters influence the performance of the shared factors composition
representation and the expert-guided semantic representation mod-
ules within our FZR framework, respectively. This subsection is
dedicated to an exploration of the impact that the settings of these

Table 4: Hit@1(%) of our hyperparameter tune-up experi-
ments for the number of clusters for shared factors and the
recalled relations (RR) scoring by experts.

Clusters
RR

n=1 n=2 n=3 n=4 n=5 n=6 n=7

k=5 28.1 30.3 29.8 31.0 31.3 31.1 31.0
k=10 29.4 30.5 30.0 31.1 32.6 32.5 32.3
k=15 29.2 30.9 30.7 30.5 31.5 31.3 31.0
k=20 28.2 29.6 31.0 31.2 31.7 31.4 31.1

hyperparameters on the performance of Zero-shot Relational Learn-
ing (ZSRL).

As illustrated in Table 4, we report the hit@1 performance for
the FZR model on the NELL-ZS dataset, with the range of 𝑘 set
between [5, 10, 15, 20] and 𝑛 between [1, 2, 3, 4, 5, 6, 7]. It is evi-
dent that the model achieves optimal performance when 𝑘 is set
to 10 and 𝑛 to 5. Additionally, we observe an overall improving
trend in performance as 𝑛 increases when 𝑛 is less than 5, which
suggests that our scoring mechanism for recalled similar relations
contributes positively to the improvement of the representational
distribution of relations. We also observe that as 𝑛 continues to
increase, the model performance does not further improve1. We
believe the choice of the value of 𝑛 needs to consider the scale of the
dataset and the distribution of homogeneous relations. For exam-
ple, in the case in NELL-ZS datasets which includes 181 relations,
there may not be a large number of homogeneous relations. Thus,
even if we increase the value of 𝑛, it may not bring substantial
performance improvements to the model. Concurrently, a smaller
value of 𝑘 may lead to a greater overlap within the semantic space,
whereas an excessively large value of 𝑘 can introduce superfluous
information, which is detrimental to the learning of relations. This
delicate balance between 𝑘 and 𝑛 highlights the critical need for
meticulous tuning of these hyperparameters to enhance the ZSRL
model’s performance effectively.

4.5 Visualization of Relation Representation
4.5.1 Factor Embeddings Visualization. To provide a more intuitive
and succinct presentation of qualitative results, we have visualized
the clustering of factor representations derived from textual descrip-
tions of relationships within the NELL-ZS dataset, as illustrated in
Figure 3 (a). Here we set the number of cluster at 10, where each
cluster is represented by a unique color. We can find that certain
clusters exhibit a high density of closely associated factors, dis-
tinctly segregated from other clusters, while some clusters display
a more scattered arrangement of factors. This suggests that our re-
sultant shared factor representations encapsulate both the explicit
and subtle features of relation semantics.

4.5.2 FZR Embeddings Visualization. As shown in Figure 3 (b) -
(f), we present a visualization that contrasts the proposed repre-
sentation of our method (𝑟∗ in Eq. (8)) against that of baseline

1We do not increase 𝑛 further due to the expensive cost of expert labeling.
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(a) Factor Embeddings (b) ZSGAN (c) OntoZSL

(d) DOZSL (e) FZR(sfc) (f) FZR

Figure 3: Visualization of factor embeddings and relation representation of baseline models and our proposed model FZR.

approaches. Specifically, Figure 3 (b) - (d) represent the representa-
tion of baselines; (e) indicates the representations of Shared Factors
Composition (𝑟𝑐 in Eq. (3)); (f) represents our proposed represen-
tation in FZR model (𝑟∗ in Eq. (8)). Each color square in Figure 3
represents a relation. Due to the large number of relations in the
dataset, we did not provide explanations for each color square.
The purpose of these images is to demonstrate the distribution of
relation representations learned by different models.

This visual comparison is designed to underscore the distinction
in how the relation embeddings from our model capture inter-
relation semantics when juxtaposed with those obtained from base-
line methods. More specifically, we have showcased the embeddings
of the ‘language_of_university’ relation in conjunction with five
other semantically proximate relations: ‘academic_program_at_uni-
versity’, ‘person_graduated_from_university’, ‘person_graduated_sc-
hool’, ‘country_language’, ‘person_attends_school’. These relations
are annotated within the visualization as indices 0 through 5, re-
spectively. The graphical representation clearly indicates that our
model (FZR)’s embeddings coalesce more closely, reflecting a tighter
semantic clustering of the six relations, as opposed to the more
dispersed embeddings produced by the baseline models.

5 Conclusion
In this paper, we introduce a novel model for Zero-shot Relational
Learning (ZSRL) named FZR, predicated on leveraging shared fac-
tors and expert knowledge to augment the transfer of more pro-
found knowledge between relations. More specifically, we com-
mence by discovering shared factors that widely exist in the prior
knowledge of classes, learning enhanced relation representation

by shared factors composition. Concurrently, we engage in ex-
pert scoring for homogeneous relations recalled through similar-
ity calculation, and utilize the relevance scores between relations
to reconstruct the semantic representation space, thereby yield-
ing class-sensitive relational semantic representations. Employing
these representations, we utilize a Generative Adversarial Network
(GAN) to facilitate Knowledge Transfer Learning between seen and
unseen relations. Upon training, our model demonstrates a height-
ened performance in predicting unseen relational facts. Extensive
experiments of our model conducted on real-world datasets have
yielded performance metrics that surpass several state-of-the-art
methods. Hence, the acquisition of shared factors and the construc-
tion of class-sensitive semantics could emerge as effective ways
to enhance relation representations. The further consideration of
integrating structured information between relations, to facilitate
real-time model updates through incremental learning in the face
of limited prior knowledge, stands as a promising direction.
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